
Software Analysis for the Web:
Achievements and Prospects

(Invited Paper)

Ali Mesbah
Department of Electrical and Computer Engineering

University of British Columbia
Vancouver, BC, Canada

amesbah@ece.ubc.ca

Abstract—The web has had a significant impact on our lives. A
technology that was initially created for sharing documents across
the network has evolved into a strong medium for developing and
distributing software applications. In this paper, we first provide
a concise overview of the evolution of the web itself. We then
focus on some of the main industrial and research achievements
in software analysis and testing techniques geared toward web
apps, in the past two decades. We discuss static, dynamic, and
hybrid analyses approaches, software testing and test adequacy
techniques, as well as techniques that help developers write,
analyze and maintain their code. Finally, we present some of the
current and future challenges and research opportunities ahead
in this field.

I. INTRODUCTION

Many existing software systems have been and continue to
be migrated to the web, and many new domains are developed,
thanks to the open and ubiquitous nature of the web. The web
has emerged as a successful platform for software development
and delivery with benefits that include no installation costs,
automatic upgrades for all users, and universal access and
execution from any machine with Internet access, through the
web browser.

The web is one of the most fascinating inventions of our
time. It has had a significant impact on many aspects of our so-
ciety, from business, education, government, entertainment, to
our social and personal lives. It provides a unique platform for
software engineering with benefits that include instantaneous
delivery for all users and “write once, run anywhere” through
universal access and execution from any device connected
to the Internet. Because of these benefits, any application
that can be written as a web app, is likely to eventually be
written as a web app. Web-based services such as GitHub and
StackOverflow have already revolutionized the way developers
write software. Many existing software systems have been and
continue to be migrated to the web, and many new domains
are developed, thanks to the open and ubiquitous nature of the
web.

The web is an example of a continuously evolving technol-
ogy that causes its applications to age quickly. Unlike tradi-
tional software, web apps are heterogeneous (i.e., JavaScript,
CSS, HTML, etc). The dynamic inter-dependencies between

these languages, and their distributed asynchronous clien-
t/server nature, pose many challenges for developers.

In 2007, Jazayeri [47] wrote a Future of Software Engineer-
ing (FOSE) paper in which he presented and predicted some
trends in web app development.

Today, many of those predictions have come true, but more
interestingly, the web has evolved even further and faster
than anyone could have imagined. For instance, JavaScript
has become the most popular language on GitHub [37] and a
recent survey of more than 26K developers conducted by Stack
Overflow found that JavaScript is the most-used programming
language [110]. JavaScript is now used not only inside the
browser, but also as a language for building desktop and
server-side applications, thanks to the Node.js platform. After
almost 10 years since Jazayeri’s paper, we set out to explore
the achievements and prospects of the software engineering
research for the web.

In this paper, we focus on two closely related software
engineering areas, namely, software analysis and software
testing. We look at the research in the past two decades,
but mainly focus on modern web apps, highlighting some
of the main challenges they post and recent achievements in
techniques and tools for web analysis and testing. Finally, we
discuss potential future research directions.

We, by no means, claim that this paper represents all the
relevant and noteworthy research performed in the area of web
analysis and testing. Nevertheless, we hope that this paper will
provide an overview of some of the achievements and potential
challenging areas for future exploration.

We organize the rest of this paper as follows. Section II
depicts a concise overview of the evolution of the web, from its
inception to today. Section III discusses some of the technical
challenges posed by modern web apps today for analysis and
testing. Section IV presents research advancements and indus-
trial tools for web analysis and testing. Section V provides
additional areas in which opportunities and challenges exist
for future research. Finally, Section VI concludes the paper.



II. THE WEB EVOLUTION

A. Static Hypertext Documents

Around three decades ago, a simple but powerful clien-
t/server architecture [33] was developed, in which resources
could be linked together and easily accessed through web
browsers, using a handful of crucial concepts, such as the Uni-
form Resource Identifier (URI), HyperText Markup Language
(HTML), and HyperText Transfer Protocol (HTTP) [17]. In the
early nineties, the web was merely composed of linked static
hypertext documents. Upon sending a request to the server,
the server would simply locate and retrieve the corresponding
web page on the file-system, and send it back to the browser.
The browser would then use the new web page to refresh the
entire interface.

B. Dynamically Generated Pages

After a wider adoption of the web, more complex web apps
began to flourish, moving from static pages on the file-system
to dynamically generated pages served by smarter web servers.
The first server-side dynamic web pages were often created
with the help of languages such as Perl, typically though the
Common Gateway Interface (CGI). As the web matured, more
server-side scripting languages appeared, such as PHP, Python,
Ruby, JavaServer Pages (JSP), and Active Server Pages (ASP).
The ability to generate web pages contributed to the separation
of concerns (presentation, business logic, data) and realization
of multi-tier architectures for web apps.

C. REST Architecture

At this stage, many of the initial concepts forming the back-
bone of the web (e.g., HTTP, URL, HTML) and additional rec-
ommendations such as Cascading Style Sheets (CSS) and the
Document Object Model (DOM) were standardized through
the World Wide Web Consortium (W3C). Additionally, an
architectural style of the web, called the Representational State
Transfer (REST), was proposed and interestingly published
first at ICSE 2000 [33], capturing the essence of the main
features of the web architecture. REST specified a layered
client-stateless-server architecture in which each request is
independent of the previous ones, inducing the property of
scalability.

D. Rich Internet Applications

Soon it became apparent that HTML was not designed for
creating interactive Graphical User Interfaces (GUI). Classical
web apps are, inherently, based on a multi-page user interface
model, in which interactions are based on a synchronous
page-sequence paradigm. While simple and elegant in design
for exchanging documents, this model has many limitations
for developing modern web apps with user friendly human-
computer interaction. The main limitations can be summarized
as follows:

• Low lever of user interactivity;
• Redundant data transfer between the client/server;
• High user-perceived latency;

• Passive browser engine: there is hardly any application-
specific client-side processing.

The concept of Rich Internet Applications (RIA) was pro-
posed [6] as a response to these issues. The common ground
for all RIAs is an intermediate layer of code introduced
between the user and the server, which acts as an extension
of the browser, usually taking over responsibility of server
communication and rendering the web user interface. Exam-
ples include Adobe Flex (based on Flash), and Microsoft
Silverlight. One of the main issues with such technologies
was their non-standard, proprietary nature that required the
installation of specific plugins by the user. 1

E. JavaScript and Dynamic DOM

By the year 2005, web browsers had advanced their support
for technologies such as the DOM, and JavaScript, which
allowed developers to mitigate some of the limitations of
heavy-weight RIAs. The term Ajax, was coined to highlight
and give a name to a new breed of web apps that could be
seen as a further evolution of the classical web:

• standards-based presentation using XHTML and CSS;
• dynamic display and interaction using the DOM;
• data interchange and manipulation using XML/JSON;
• asynchronous data retrieval using XMLHttpRequest

(XHR);
• and JavaScript binding everything together.
This brought an end to the classical click-and-wait style

of web navigation, enabling developers to provide the level
of responsiveness and interactivity end-users expected from
desktop applications. With Ajax, small updates are requested
from the server behind the scenes, and updated on the current
page through modification made by JavaScript code to the
DOM-tree. This in sharp contrast to the classical multi-page
style, in which after each state change a completely new DOM-
tree is created from a full page reload.

This new model enables single-page web interfaces, which
can improve complex, non-linear user workflows by decreas-
ing the number of click trails and the time needed to perform
a certain task, when compared to classical multi-page variants.
Examples of early adopters of this model include Gmail and
Google Docs.

By 2010, more and more of the state of the web app started
was being off-loaded to the client, transforming JavaScript
from an often neglected scripting language that was used
for small client-side validation, to a popular programming
language for building sophisticated large applications.

III. CURRENT CHALLENGES

The web is an excellent example of an evolving technology
that causes its applications to age. It started as a simple static
page-sequence client/server system. web apps based on the
classical model of the web and the technologies available in

1Note that Java Applets in the nineteens were a previous not-so-successful
attempt at targeting the same issue.



DOM

JS, PHP, Ruby, 
Java, .Net, etc

CSS

JS

Client Server
HTTP

Fig. 1. web apps are heterogenous and distributed: different languages need
to interact, some over the network, to realize a web app.

the early nineties, have aged and become out-dated. Over
the course of the past 20 years, many web technologies
(e.g., browsers, servers, web standards) have evolved. These
technological advancements have made it possible to develop
web systems that meet up with current user expectations, i.e.,
a satisfactory degree of responsiveness and interactivity.

The new changes in the evolution of the web bring not
only advantages but also come with a whole set of new
challenges due to its heterogeneous and distributed nature,
depicted in Figure 1. Three languages, namely JavaScript,
CSS, and HTML/DOM interact on the client side internally,
and over the network through HTTP with at least one other
language in the server side (e.g., JavaScript, PHP, Ruby,
Java, etc). What we witness is that web apps built with the
new models and technologies are not supported by existing
tools (e.g., web crawlers), techniques (e.g., web analysis and
testing), and development environments (e.g., IDEs) that have
been typically slower to evolve.

Modern web apps are particularly challenging to deal with
for developers, which we describe in the next subsections.

A. JavaScript: the Difficult Parts

JavaScript has become the lingua franca of implementing
the client-side of modern web apps. It is also becoming
popular as a desktop application and server-side language
thanks to the Node.js platform [3].

JavaScript has a dynamic, weakly-typed, and asynchronous
nature. For instance, constructs such as eval allow text to turn
into executable code at runtime, forming a serious hindrance
for providing static guarantees about the behaviour of the code
[99] as well as performing proper instrumentation of the code
for dynamic analysis. The weakly-type nature of the language
makes it particularly challenging to apply many stablished
analysis techniques that work on statically typed languages
such as Java. The language also enables asynchronous call-
backs through mechanism such as setTimeout and the
XMLHttpRequest (XHR) for server communication, which
are error-prone [45] and difficult to follow [5]. In addition,
JavaScript is an interpreted language, meaning that there is
typically no compiler that would help developers to detect
erroneous or unoptimized code during development.

JavaScript also has intricate features such as prototypes
[94], first-class functions, function variadicity, and closures
[23]. Prototype-based programming is a class-free style of
object-oriented programming, in which objects can inherit
properties from other objects directly. In JavaScript, prototypes
can be redefined at runtime, and immediately affect all the
referring objects. The language has a very flexible model
of objects and functions. Object properties and their values
can be created, changed, or deleted at runtime and accessed
via first-class functions. Due to such flexibility, the set of
all available properties of an object is not easily retrievable
statically. This poses a major challenge for scalable and precise
static analysis for JavaScript [107], [31]. Empirical studies
[100], furthermore, have found that most dynamic features in
JavaScript are frequently used by developers and cannot be
disregarded in code analysis techniques.

B. The Dynamic DOM

JavaScript extensively interacts with the Document Object
Model (DOM) [111] to update the web page seamlessly at run-
time. The DOM is a platform- and language-neutral standard
object model for representing HTML and XML documents.
It provides an API for dynamically accessing, traversing, and
updating the content, structure, and style of such documents.
Changes made dynamically, through JavaScript, to DOM el-
ements are directly manifested in the browser’s display. This
allows a single-page to be updated incrementally, which is
substantially different from the traditional URL-based page
transitions through hyperlinks, where the entire DOM was
repopulated with a new HTML page from the server for every
state change. This dynamic interplay between two separate
entities, namely JavaScript and the DOM, makes web apps
particularly error-prone [87].

C. Eventfulness

JavaScript is an event-driven language allowing developers
to register various event listeners on DOM nodes. While
most events are triggered by user actions, timing events and
asynchronous callbacks can be fired with no direct input from
the user. To make things even more complex, a single event
can propagate on the DOM tree and trigger multiple listeners
according to the event capturing and bubbling properties of the
event model [112]. Understanding these event-driven interac-
tions in JavaScript is known to be challenging for developers
[5].

D. Cascading with Style

Finally, CSS is used for applying a visual presentation onto
the web page. CSS has a number of intricate characteristics,
such as inheritance, cascading order, and selector specificity,
all defined in relation to the dynamic DOM, which make the
language challenging to analyze [65].



E. Inter-language Interactions

The characteristics of these languages (JavaScript, HTML/-
DOM, CSS), the dynamic inter-dependencies between them,
and the heterogenous, distributed asynchronous client/server
nature of web apps, make web development, testing, and main-
tenance a daunting endeavour for developers. web apps are
particularly error-prone [87], [90], [45], difficult to understand
[5], [117], and challenging to analyze [107], [31], [40] and test
[12], [69].

In the past two decades, software engineering research
has targeted some of these changing challenges with great
achievements, although still many remain to be addressed.

IV. ACHIEVEMENTS

This section focuses on what the author believes are some
of the main achievements, primarily in the past decade, in the
area of software analysis and testing for the web.

A. Web Analysis

Recent research advances have made the use of static
analysis on JavaScript more practical [9], [32], [48], [53],
[58], [81], [89], [108]. Other techniques mitigate the analysis
challenges by using a dynamic or hybrid approach [4], [38],
[72], [114].

Code Analysis. WALA adapts traditional points-to analysis
[107], [109] for JavaScript through correlation tracking of
dynamic properties in the code. Pointer analysis has also been
combined with use analysis to investigate [57] the effects of
JavaScript libraries and frameworks on the applications’ data
flow. Using WALA [109] a partial call graph can be inferred
through static analysis. Constructing (approximate) JavaScript
call graphs [32] has also been proposed. Since JavaScript is
such a dynamic language, these techniques yield conservative
results that may not be reflective of an application’s actual
execution. They also ignore the JavaScript-DOM interactions
completely. TAJS [51] is a whole-program data-flow analyzer
for JavaScript. It includes [50] statically modelling the role
of the DOM and browser in static analysis albeit with known
shortcomings that result in false-positives.

Dynamic and hybrid JavaScript analysis techniques [4], [5],
[84], [114] have attempted to solve some of the shortcomings
of static analysis. For instance, JavaScript blended analysis
[113] integrates the information gathered during both static
and dynamic analyses to perform a points-to analysis of Java-
Script applications. Tochal [4] performs DOM-sensitive hybrid
change impact analysis for JavaScript through a combination
of static and dynamic analysis. EventRacer facilitates dynamic
race detection for event-driven web apps [97].

Code Smells and Refactoring Support. Code smells are
patterns in the source code that indicate potential comprehen-
sion and maintenance issues in the program. Detected code
smells can be refactored to improve the design and quality
of the code. WebScent [85] detects client-side smells that
exist in embedded code within scattered server-side code. Such

smells cannot be easily detected until the client-side code is
generated. After detecting smells in the generated client-side
code, it locates the smells in the corresponding location in
the server-side code. WebScent primarily identifies the mixing
of HTML, CSS, and JavaScript, duplicate code in JavaScript,
and HTML syntax errors. JSNose [73] combines static and
dynamic analysis for detecting 13 smells in JavaScript code.
DSLint [39] is a dynamic analysis tool to check code quality
rules and best practices in JavaScript code. Detecting unused
CSS code has been supported by either dynamically checking
CSS rules against the DOM elements of a web app [65] or
statically using tree logics [36].

Some initial progress has been made toward automated
transformation and refactoring support for the web. Semi-
automatic refactoring support has been proposed in the form
of JavaScript rename [30] and for specifying and enforc-
ing JavaScript practices [29]. Other techniques [49], [63]
transform unsafe eval calls in JavaScript code to functionally
equivalent but without the use of eval. Finding refactoring
opportunities in CSS code [60] has recently received attention.

Programmer Support. Helping programmers understand a
web app’s code and behaviour has seen some improvements
in the past decade, although much remains to be done. FireDe-
tective [117] is a Firefox add-on that captures and visualizes
a trace of execution on both the client and the server side.
The goal is to make it easier for developers to understand
the link between client and server components. Clematis
[5] facilitates the process of comprehending the dynamic
behaviour of JavaScript applications using a high-level model
and visualization based on a semantically partitioned trace.
The technique assists developers in understanding the complex
event-driven interactions in JavaScript applications, through a
combination of automated code transformation, tracing, model
generation, and visualization, which depicts the creation and
flow of triggered events, the corresponding executed JavaScript
functions, and the mutated DOM nodes. FireCrystal [93] is
another Firefox extension that stores the trace of a web app in
the browser. It then visualizes the events and changes to the
DOM in a timeline. DynaRIA [8] focuses on investigating the
structural and quality aspect of the code by collecting a trace.

B. Web Testing

There have been many advancements in software testing
for the web [64]. This is an area that has attracted most of
the attention from software engineering researchers. Recently,
Garousi et al. conducted a systematic mapping study [35]
followed by a systematic review [25] of web app testing lit-
erature. They found a large body of work addressing different
challenges of web testing. We refer the reader to these studies
for a complete overview. Here we discuss some of the main
achievements.

Testing Classical web apps. Ricca and Tonella were among
the very first researchers to publish on web testing in 2001.
Their ICSE 2001 paper [98] proposed a model-based testing



technique for classical web apps. This influential work won
an ACM Most Influential Paper Award in 2011. Elbaum et al.
were the first to propose the use of ‘user session data’ for web
app testing. Their technique [26] collects user interactions in
the form of requests send to the server, and transforms those
into test cases. Subsequently, in 2005, Andrews et al. [10]
proposed to manually model classical web apps as Finite State
Machines (FSMs) to generate test cases from.

Testing Modern Web Apps. The effectiveness of applying
traditional web testing techniques [98], [10], [26], [106] to
modern web apps were assessed in a case study by Marchetto
et al. [59]. This analysis suggests that such traditional tech-
niques have many limitations in testing modern dynamic web
apps. Based on this analysis, a new approach for state-based
testing of modern web apps was proposed in 2008. The
technique first generates traces of the application by manually
interacting with the application. The traces are then used
to construct a finite state model. Sequences of semantically
interacting events in the model are transformed to test cases
once the model is refined by the tester.

Mining Test Models. In order to automatically infer a model
of a given modern web app, Crawljax was proposed [68], a
technique capable of exploring event-based DOM mutations of
a web app. While exploring, Crawljax infers a state-flow graph
capturing the states of the user interface, and the possible
event-based transitions between them. This crawling capability
provide access to dynamic DOM states, which servers as a
strong vehicle for various web analysis and testing purposes.
Other similar techniques were proposed (e.g., ProCrawl [104],
FeedEx [71]) for mining test models from web apps using
different state and event abstraction notions.

Test Generation. A new testing technique was proposed in
2009 [67], which combined the automated exploration of
Crawljax with invariant-based testing for modern web apps.
In this technique, with access to different dynamic web states,
the user interface can be checked against different constraints,
expressed as invariants, which can act as oracles to auto-
matically conduct sanity checks in any DOM state. Generic
and application-specific invariants can be expressed on the
DOM-tree, between DOM-tree states, and on the run-time
JavaScript variables. Examples of generic invariants include
the requirement that any DOM should be composed of valid
HTML, that there are no broken links, and that all element
ID attributes are unique. The state-flow graph automatically
inferred through crawling was also used for test generation.
For example, it can be used to generate different event paths
and cover the application’s state space in different ways. These
types of test cases can be used in regression testing of web
apps in which the DOM states of of a new version of the
application are checked agains a previous version’s [101]. The
state-flow graph is also used for generating event-based and
unit test cases [76].

Cross-browser Testing. With the advent of web technologies

and new browsers, each with a slightly different client-side
rendering of the application, the cross-browser compatibility
issue became increasingly important. Cross-browser testing
seeks to automatically detect inconsistencies in the behaviour
and layout of a web app across multiple browsers. WebDiff
[22] is a tool that analyzes the DOM as well as screen-shots
of pairs of screens to locate cross-browser issues. The focus
here was on identifying cross-browser differences in individual
screens. Subsequently, CrossT was proposed [66] to go beyond
screen-pairs and cover a larger set of the state space. The
problem of cross-browser compatibility testing of modern web
apps was posed as a ‘functional consistency’ check of web
app behaviour across different web browsers and an automated
solution was provided. CrossT identifies more systemic cross-
browser issues that manifest in the overall behaviour of the
web app. It consists of (1) automatically analyzing the given
web app under different browser environments and capturing
the behaviour as a state-flow graph, and (2) formally com-
paring the generated models for equivalence on a pairwise-
basis and exposing any observed discrepancies. CrossCheck
[20] combines both WebDiff and CrossT to benefit from the
advantages of both approaches and X-Pert [21] improves upon
previous work by using a more precise differencing technique
for detecting layout issues.

Testing JavaScript. To generate test inputs for JavaScript
code, Artemis was proposed at ICSE 2011 [12], a testing tech-
nique that uses feedback-directed random testing. Feedback-
directed testing is a technique in which test cases are randomly
generated and executed. The feedback obtained by running the
generated test cases is then used to guide the test generation
engine to be more effective, for example, in covering the
application. Artemis randomly generates test inputs, executes
the application with those inputs, and uses the gathered infor-
mation to generate new test inputs. The execution feedback
directs the test generator towards inputs that yield higher
coverage.

There have been recent advancements in applying symbolic
execution to the web. Symbolic execution is a static analysis
technique that treats input variables as symbolic variables.
For every program path detected, constraints are collected
(called path constraints) and solved through constraint solvers.
Concolic testing combines symbolic execution with dynamic
analysis to overcome some of the limitations of symbolic
execution and current constraints solvers. Both have been
applied for testing JavaScript code recently. Kudzu [103] is
a symbolic execution technique for JavaScript applications.
Kudzu is built on top of a constraint solver (called Kaluza)
that supports boolean, machine integer (bit-vector), and string
constraints, which is used for reasoning about the parsing
and validation checks that JavaScript applications perform.
Kudzu is particularly focused on string reasoning and finding
security vulnerabilities in JavaScript code. Jalangi [105] is
a framework for light-weight source instrumentation and dy-
namic analysis of JavaScript code. It also provides a concolic



engine for JavaScript. It handles linear integer, and string, and
type constraints. SymJS [41] is a framework for automatic
testing of JavaScript code. It contains a symbolic execution
engine for JavaScript, and an automatic event explorer. It
automatically explores events, and symbolically executes the
related JavaScript code to produce test cases. Its symbolic
engine is built on a symbolic virtual machine, a string-
numeric solver, and a simple symbolic DOM model. ConFix
[28] is an automated technique, based on dynamic symbolic
execution, that generates DOM-based test fixtures for unit
testing JavaScript functions. Atrina [77] infers test oracles
from existing UI-level test cases to generate JavaScript unit
tests.

Capture and Replay. Extensive reliance on user interactions
is an important characteristic of modern web apps. Capture
and replay tools are used in the literature to address this
issue. Mugshot [70] is a system which employs a server-
side web proxy to capture events in interactive web apps. It
injects code into a target web app in order to record sources
of nondeterminism such as DOM events and interrupts. The
recorded information is used to dispatch synthetic events to a
web browser in order to replay the execution trace. WaRR
[11] is another system for capturing and replaying events.
Capturing is accomplished by altering a user’s web browser in
order to record keystrokes and mouse clicks. In the event of
a failure, end users of a web app may send a record of their
keystrokes to the developer for debugging purposes. Jalangi
[105] is another record-replay tool that supports dynamic anal-
ysis by shadow execution on shadow values. Capture/replay
tools are also integrated with debugging tools for web apps
[18].

Test Adequacy Assessment. There are different ways of
assessing the adequacy of a give test suite. Code coverage
and mutation testing are two well-known techniques. We
have witnessed many advancements in tools and techniques
for assessing the quality of web app test suites recently.
Code coverage is the most widely used metric for test case
assessment. The idea is to measure the portion of the program
code executed when the test suite is run. Code coverage
is particularly useful for detecting under tested portions of
the code. Many industrial tools exist today that automate
measuring JavaScript code coverage.234 All these tools focus
on JavaScript code-level coverage.

DOMCovery [78] automatically extracts and measures the
DOM adequacy criteria for a given test suite and generates
a visual DOM coverage report. It uses a set of DOM-based
test adequacy criteria for web apps for measuring coverage at
two granularity levels, namely (1) inter-state: the percentage
of DOM states and transitions covered in the total state space
of the web app under test, and (2) intra-state: the percentage
of elements covered in each particular DOM state. Test output

2https://github.com/itay/node-cover
3https://github.com/yahoo/istanbul
4http://blanketjs.org

uniqueness [7] is a set of blackbox testing criteria including
five that are based on the HTML structure, and two based
on the textual content of webpages. The key insight behind
output uniqueness as a testing criterion is that two test cases
that yield different outputs may cover two different paths in
the code.

Code coverage alone does not assess the fault-finding capa-
bilities of a test suite. Mutation testing is a fault-based testing
technique to assess and improve the fault-finding quality of a
test suite. The technique first generates a set of mutants—
modified versions of the program—, by applying a set of
well-defined mutation operators on the original version of
the system under test. These mutation operators typically
represent subtle mistakes, such as typos, commonly made by
programmers. A test suite’s adequacy is then measured by its
ability to detect (or ‘kill’) the mutants, which is known as
the mutation score. Mutation operators have been proposed
[96] for HTML and Java Server Pages. Mutandis [75] is
the first mutation testing technique for JavaScript programs.
Mutandis leverages static and dynamic program data to rank,
select, and mutate potentially behaviour-affecting portions of
the program code. It uses the notion of function rank to
rank JavaScript functions based on their relative importance
based on the application’s dynamic behaviour. The approach
gives a higher probability to functions ranked higher for being
selected for mutation. The insight is that if a highly ranked
function is mutated, because many other functions depend on
its functionality, the result of the mutation will be more likely
to be observable and thus non-equivalent. To mutate a selected
function, Mutandis selects from a set of JavaScript-specific
mutation operators, assembled based on common mistakes
made by JavaScript programmers in practice.

Another dimension related to test quality is the notion of
test case robustness. A test case is believed to be fragile when
a small change in the application layout causes test cases to
fail. In addition, test cases created for one particular browser
can easily break when executed on a different web browse.
Fragile test cases require extra maintenance effort to remain
functional and as such increase the overall cost of a software
project. This is especially the case for test cases that check the
user interface of the web app. For instance, in Selenium test
cases, DOM element locators such as ID or XPath expressions
are used to retrieve elements from the webpage. References to
elements are needed in order simulate user actions by firing
events and to assert properties of the DOM for correctness.
Researchers have discussed and studied the fragility of DOM
element locators [54], [55], [68], [79]. Montoto et al. [79]
propose an algorithm for making XPath locators less fragile
by taking into account other properties of DOM elements such
as their attributes. Contextual clues [115] were proposed to
mitigate the locator fragility problem in DOM-based test cases,
by using a series of contextual clues based on the textual
values of elements and their relative positions to locate DOM
elements. LED [15] is an automated technique for synthesizing
DOM element locators using positive and negative examples



provided interactively by the developer. LED expresses the
problem of synthesizing complex multi-element locators as a
constraint solving problem over the domain of valid DOM
states in a web app.

Server-side Code. The server-side code in languages such as
Java can typically be tested with conventional software testing
techniques. An interesting line of work is that by Halfond
et al., which provide a test generation technique based on
automated client/server interface discovery [43] and modelling
input parameters using symbolic execution [42] of server-side
Java code. Analyzing server-side scripting languages, such as
PHP, have received some attention [102], [44], although the
main focus has been on security analysis.

C. Empirical Studies

In order to understand how web developers write today’s
web apps and what consequences that has for software analysis
and testing, various empirical studies have been conducted by
analyzing web apps in the wild.

Dynamic Language Features. To gain an understanding of
which dynamic features of the JavaScript language developers
depend on in practice, an empirical study on 100 websites and
three benchmarks [100] showed that many of the dynamic
features of the language are indeed used in practice. For
instance, many libraries change the builtin prototypes in order
to add behaviour to different types. The study also found that
object properties are changed (added/deleted) at runtime, the
use of eval to generate and execute code is frequent, and
functions take a different number of parameters at runtime
than statically declared. In a follow-up study [99], the runtime
behaviour of the eval function was examined, which revealed
that between 50–80% of the 10,000 studied websites used
eval. The study showed that JavaScript is a difficult terrain
for static analysis since the dynamic features are prevalent and
cannot simply be ignored to make approximate simplifications.
A recent work [95] studied the use of type coercions in
JavaScript by dynamically analyzing hundreds of programs;
it found that type coercions are widely used (in 80.42% of
executed functions) and that most coercions are harmless.

Insecure Inclusions. Insecure practices of using JavaScript
on the web were analyzed [116]; 66% of the 6,800 websites
studied were found to contain insecure practices pertaining
to the inclusion of JavaScript files from external domains.
In addition, around 44% of the sites used eval to generate
and execute JavaScript code on the client-side. The study
concluded that developers need to adopt and apply safer
alternatives that exist today to reduce potential security risks.
In a related study [86], a large-scale analysis was conducted
of three million pages of the top 10,000 Alexa sites in search
of the trust relationships of these sites with their JavaScript
library inclusions. The study showed that even top-sites trust
remote JavaScript providers that could be compromised and
serve malicious code.

Dynamic DOM States. Through the execution of JavaScript
code in browsers, the DOM tree representing a webpage at
runtime can be incrementally updated without requiring a URL
change. This dynamic DOM manipulation has a significant
impact on traditional web analysis techniques that treat web
apps as a sequence of linked static HTML pages. In order to
gain an understanding of the prevalence and extent of dynamic
DOM manipulated through JavaScript in practice, a study was
conducted [16] on real-world websites. The study revealed that
dynamic DOM is prevalent in online web apps today. From
the 500 websites they analyzed, 95% contained client-side
dynamic DOM content, and on average, 62% of the analyzed
web states of those websites were dynamic DOM. The study
shows that today’s web apps rely heavily on client-side code
execution, and HTML is not just created on the server, but
manipulated extensively within the browser through JavaScript
code.

Another study [80] aimed at understanding the software
engineering implications of this change by looking at de-
viations from many known best practices in such areas of
performance, accessibility, and correct structuring of HTML
documents. The study assessed to what extent such deviations
are manifested through client-side JavaScript manipulation
only. To this end, a large scale study was conducted, involving
automated JavaScript-enabled crawling of over 4,000 websites,
resulting in over 100,000,000 pages, and around 1,000,000
unique client-side user interface states analyzed. Traditionally,
each URL of a web site pointed to a single HTML document
on the server, providing a one-on-one mapping between the
two.

Fig. 2. Number of HTML/DOM states per URL [80].

Figure 2 depicts the relation in current web apps. There
are no entries underneath the diagonal since each URL points
to at least one HTML/DOM state. The results show that per
URL, there are 16 dynamic DOM states, on average. This
means that if a traditional static HTML analysis tool would
request a certain URL once, without any context, it would miss
more than half of the states. The study also found that 90%
of the analyzed websites perform DOM manipulations after



they are loaded into the browser. The findings also show that
the majority of sites contain a substantial number of problems,
making sites unnecessarily slow, inaccessible for the visually
impaired, and with layout that is unpredictable due to errors
in the dynamically modified DOM states. For instance, more
than half of the sites contain errors such as ambiguous IDs and
invalid HTML structure. These violations manifest themselves
not just in HTML directly coming from the server, but require
code in the browser to execute before they become visible
and detectable. Consequently, tools based on static analysis, or
dynamic analysis using traditional hyperlink-based crawlers,
will fail to analyze a large fraction of a modern web app.

Bug Mining. A few studies have examined reported failures
of web apps to characterize their nature and root causes.
A characterization study [91] of the error messages printed
to the browser console by JavaScript code execution of 50
websites, selected from the Alexa top 100 most visited sites
revealed that runtime JavaScript errors (1) are widespread in
deployed websites: an average of four JavaScript runtime error
messages appear even in popular production web apps, (2) fall
into a small number of categories: Permission Denied (52%),
Undefined Symbol (28%), Null Exception (9%), and Syntax
Errors (4%), and (3) are mostly (70%) non-deterministic,
meaning that they vary from one execution to another, and
that the speed of testing plays an important role in exposing
such errors.

In a more recent study [87], over 300 bug reports from
various web apps and JavaScript libraries were examined to
understand the nature of the errors that cause these faults, and
the failures to which these faults lead. The results of the study
reveal that (1) around 65% of reported JavaScript faults are
DOM-related — a fault is DOM-related if the parameter of a
DOM access method (such as getElementById(param))
or the assignment value for a DOM access property is
erroneous, thereby causing an incorrect retrieval or an in-
correct update of a DOM element —, (2) most (around
80%) high severity faults are DOM-related; (3) the vast
majority (around 86%) of JavaScript faults are caused by
errors manually introduced by JavaScript code programmers,
as opposed to code automatically generated by the server; (4)
error patterns exist in JavaScript bug reports (such as omitting
null/undefined checks); and that (5) DOM-related faults
take longer to triage and fix than non-DOM-related JavaScript
faults. Based on these findings, the authors suggest that testing
efforts should target detecting DOM-related faults, as most
high-impact faults belong to this category. One possible way
to do this is to guide the test generation towards tests that
cover DOM interaction points in the JavaScript code. This
emphasis is particularly useful since DOM-related JavaScript
faults often have no accompanying error messages and thus
can be more difficult to find.

D. Industrial Advancements

Currently, many industrial tools exist that assist developers
in parsing (e.g., Esprima5, Rhino6), optimizing (e.g., Google
Closure Compiler7), and statically analyzing JavaScript code
for common syntactical errors (e.g., JSHint8). JSLint [2] is a
static code analysis tool written in JavaScript that validates
JavaScript code against a set of good coding practices. The
code inspection tends to focus on improving code quality from
a technical perspective. The Google Closure Compiler [1] is a
JavaScript optimizer that rewrites JavaScript code to make it
faster and more compact. It helps to reduce the size of Java-
Script code by removing comments and unreachable code.

Many testing frameworks have been developed to help
developers to write test cases for JavaScript code. For in-
stance, QUnit9 is a popular JavaScript unit testing framework.
Jasmine10 is a behaviour-driven development framework for
testing JavaScript code. Mocha11 is a JavaScript test frame-
work that runs both on Node.js and the browser and has
support for testing asynchronous methods. jsTestDriver12 is
a framework that automates running a JavaScript test suite in
different browsers.

A challenge in testing web apps arises when the JavaScript
code interacts with the DOM. In this case, an environment
is needed that can support the creation and manipulation of
the DOM and event-listeners. This is what current browser
automation frameworks aim for. For instance, frameworks such
as Selenium13, PhantomJS14, and SlimerJS15 provide APIs
for driving a browser instance, firing events, and accessing
DOM elements at runtime. These browser automation APIs
can be utilized for writing DOM-based test cases that check
the behaviour of the web app (and indirectly its JavaScript
code) from an end-user perspective.

Although such frameworks make it easier for the developer
to write test cases, they still require a substantial level of
manual effort.

V. LOOKING TO THE FUTURE

The web is a moving target. It is continuously and rapidly
evolving, making it quite challenging for developers to cope
with all the technological advancements.

A. JavaScript Is Here to Stay

In 2007, Jeff Atwood predicted [13] that JavaScript would
become a prominent language, in a bold statement now widely
known as Atwood’s law:

5http://esprima.org
6https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
7https://developers.google.com/closure/compiler/
8http://www.jshint.com
9http://qunitjs.com
10http://pivotal.github.io/jasmine/
11http://visionmedia.github.io/mocha/
12https://code.google.com/p/js-test-driver/
13http://www.seleniumhq.org
14http://phantomjs.org
15http://www.slimerjs.org



“Any application that can be written in JavaScript, will
eventually be written in JavaScript.”

Atwood’s Law

Today, JavaScript is the most prevalent language in GitHub
repositories [37] and a recent survey of more than 26K
developers conducted by Stack Overflow found that JavaScript
is the most-used programming language [110].

Attempts at replacing JavaScript with other languages and
frameworks (e.g., Java, Flash, SilverLight, Dart) have largely
failed. Approaches that have embraced the language by mak-
ing it easier for developers to write code have had much more
success. An example of the latter is TypeScript which is a
typed superset of JavaScript that compiles to plain JavaScript.

JavaScript is not only used for writing client-side code
anymore. Today, many desktop and server-side applications
are written in JavaScript. In fact, npm,16 a popular JavaScript
package manager, has become the largest software package
repository with over 205K packages, now surpassing Maven
Central (Java) and RubyGems (Ruby).

JavaScript is also being supported and used on smartphones,
smartwatches, and other small devices. Advancements in Java-
Script and HTML5 that allow access to native features of
mobile devices (e.g, GPS, Camera) can potentially provide
an alternative for building native apps that are expensive to
build and maintain — build once, run on any mobile device
—. We are likely to see more mobile apps written as web
apps to circumvent the challenges pertaining to building and
maintaining native apps for multiple platforms.

Together with HTML5, JavaScript is also a viable solution
for building apps for the ‘Internet of Things’ [62]. JavaScript
is well-suited to embedded device programming thanks to
its asynchronous callbacks and native I/O support (through
Node.js), which are ideal for event-driven hardware program-
ming. Examples of JavaScript used for embedded devices
include NodeBots17, Cylon,18 and JohnnyFive19.

New JavaScript features such as WebGL 3D will become
popular as browsers continue to increase in computational
speed. Powered by frameworks such as three.js,20 we can
see more applications of this technology, such as games, in-
browser.

With the wide adoption of the language, which is likely to
increase every year, much better tool support is needed in the
near future, which provides a great opportunity for software
engineering researchers to have impact in the field.

B. The Problematic DOM

The interaction between JavaScript and the DOM on the
client-side is error-prone [87]. Partly in response to these
issues, we have witnessed a plethora of JavaScript libraries
such as jQuery and frameworks such as AngularJS, Backbone,

16https://www.npmjs.com
17http://nodebots.io/
18http://cylonjs.com/
19http://johnny-five.io/
20http://threejs.org

or Ember, mainly to abstract away and facilitate the interaction
between JavaScript code and the DOM. A promising direction
pushes the DOM even further into a virtual/shadow entity;
solutions such as ReactJS21 and Polymer22 are two famous
examples that help developers to move towards more reusable
dynamic components. Despite these efforts, DOM-JavaScript
interactions pose a threat for inconsistencies in applications
that are built on top of these frameworks [89]. It seems
unlikely that the DOM will disappear anytime soon from the
picture. Therefore, better tools and techniques are needed to
support web developers in their efforts to write and analyze
their code.

C. Asynchronous Programming with Callbacks

JavaScript uses an event-driven model with a single thread
of execution. Programming with callbacks is especially useful
when a caller does not want to wait until the callee completes.
Callbacks are used to responsively handle events on the client-
side by executing functions asynchronously, and, in Node.js
callbacks are used on the server-side to service multiple con-
current client requests. The event loop in JavaScript prioritizes
the single thread to execute the call stack first; when the stack
is empty, the event loop dequeues a message from the task
queue and executes the corresponding callback function.

Unfortunately, callbacks induce a non-linear control flow
and can be deferred to execute asynchronously, declared
anonymously, and may be nested to arbitrary levels [34]. All of
these features make callbacks difficult to analyze, understand,
and maintain, which developers have coined the term “callback
hell” for in practice. New analysis techniques and control flow
graphs are needed to adequately reason about code that uses
callbacks, especially asynchronous ones.

D. Benchmarks

Despite the many achievements in the field, unfortunately
the research area lacks central well-maintained benchmarks to
be used for meaningful evaluations, controlled experiments,
and comparative studies. Such repositories exist for other
software domains, examples of which include the SIR [24] and
BugBench [46], and Defect4J [52]. The field is in a real need
of a coherent repository with representative subject systems
of different types and sizes, with comprehensive test suites, as
well as real bugs and patches. Such a repository can be used
as a comparison ground for new web analysis and testing tools
and techniques.

E. Mining Artifacts and Models

Leveraging feedback from existing software artifacts to
guide the analysis and testing is another direction that has
gained more attention recently, but can be explored much
further. In the past, user-sessions [27] and user interactions
[61] have been leveraged for web testing. Using the knowledge
in existing test cases has been explored recently with Testilizer

21http://facebook.github.io/react/
22https://www.polymer-project.org/



[74]. The work is motivated by the fact that a human-written
test suite is a valuable source of domain knowledge, which can
be exploited for tackling challenges in automated web app test
generation. It takes as input a set of Selenium test cases TC
and the URL of the application, automatically infers a model
from TC, feeds that model to a crawler to expand by exploring
uncovered paths and states, generates assertions for newly
detected states based on the patterns learned from TC, and
finally generates new test cases. Other artifacts can be mined
to learn more about the real challenges of web developers (e.g.,
StackOverflow [14]). Mining different types of repositories has
been a largely under-explored opportunity for web analysis
and testing thus far. For instance, npm, with more than 205K
readily available JavaScript packages, and GitHub, with more
JavaScript projects than any other language, are treasure mines
to be exploited.

F. Cross-Language Analysis

Static analysis techniques for the web make simplifying
assumptions about the code. However, due to the dynamic
nature of and interactions between the languages used for
creating web apps, most current static analysis techniques have
many shortcomings in terms of false positives and negatives. It
is surprising that despite the popularity of JavaScript, there is
still a lack of robust static analysis bug detection tools, such as
those for statically typed languages (e.g, FindBugs for Java).
This is an area that will need further push from the researchers
in the coming years.

A promising direction is the ability to handle multiple lan-
guages in static analysis. Inferring call graphs from embedded-
code [82], cross-language slicing [83], and detecting inconsis-
tencies between JavaScript and DOM [89] are three examples
in this direction. We conjuncture that more such techniques
will be proposed in the coming years to alleviate some of
the complex inter-language dependencies in web apps. Also
hybrid approaches that combine static and dynamic techniques
will probably prove to be more useful for this domain, than
pure static analysis.

G. Fault Localization and Automated Repair

When a fault is detected, the next natural step is to localize
the fault and to repair it. AutoFlox [92] is an automated
technique for localizing code-terminating DOM-related Java-
Script errors — a DOM access function returns a null,
undefined, or incorrect value, which then propagates into
several variables and eventually causes an exception in Java-
Script code execution. It takes a code-terminating line of
JavaScript code as input and performs dynamic analysis and
backward slicing of the web app to localize the cause of these
JavaScript faults. There has been limited work on exploring
fault repair for web apps. Automatic workarounds for web
apps [19] replace a buggy API call sequence with a func-
tionally equivalent, but correct sequence. Others techniques
[102], [118] aim at fixing PHP errors that generate malformed

HTML. Vejovis [88] tries to automatically find a fix for a Java-
Script fault. Based on observations of common fixes applied
by programmers to JavaScript faults, the technique provides
repair suggestions for DOM-related JavaScript faults. There
are many challenges and opportunities for fault localization
and automated repair for the web domain, areas that need
much more innovative research in the coming years.

H. Programer Support and IDEs

As web languages such as JavaScript become more promi-
nent in use, proper IDE support becomes essential for de-
veloping and maintaining large-scale applications in practice.
However, current software analysis techniques are known to
have serious limitations in supporting developers to under-
stand, write, analyze, and maintain web code. Current work
on web app code smell detection, refactoring support, and
code completion is scarce and industrial tools available to web
developers are limited in their capabilities. As it stands today,
we are not even able to extract proper control-flow and call
graphs for web apps that are composed of multiple languages.

I. Green Web Development

Reducing the power consumption in web apps has many
benefits, both on the client and server sides. On the client-side,
especially for web apps running on smartphones, this could
mean extending the battery power [56]. For the code running
on the server in the cloud, this could mean more efficient CPU
usages. Optimizing web code for more green development is
an almost entirely unexplored area that needs more attention.

VI. CONCLUSION

The web has grown into a strong medium for developing
software applications that can easily be distributed to end-
users and executed universally through the browser. The new
changes in the evolution of the web bring not only advan-
tages, but also come with a whole set of new challenges.
In this paper, we presented some of these challenges and
examined research achievements in the area of web analysis
and testing. We also discussed potential areas that require more
attention and provide opportunities for further development
and research. Unlike traditional software, web apps are built
using a combination of different languages, i.e., JavaScript,
HTML/DOM, and CSS on the client, which communicate with
one or more languages such as Java, PHP, or JavaScript on the
server. The dynamic inter-play between these languages, and
their distributed asynchronous client/server nature, pose many
challenges in practice. This is where software engineering
research can play an important role. A promising research
direction is the ability to handle multiple languages in web
analysis. We are in real need of inter-language analyses to be
able to handle web application code. Also hybrid approaches
that combine static and dynamic techniques will probably
prove to be more useful for this domain.



REFERENCES

[1] Google closure compiler. https://developers.google.com/closure/.
[2] Jslint: The JavaScript code quality tool. http://www.jslint.com/.
[3] Node.js. http://nodejs.org/.
[4] S. Alimadadi, A. Mesbah, and K. Pattabiraman. Hybrid DOM-sensitive

change impact analysis for JavaScript. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP), pages 321–
345. LIPIcs, 2015.

[5] S. Alimadadi, S. Sequeira, A. Mesbah, and K. Pattabiraman. Under-
standing JavaScript event-based interactions. In Proceedings of the
ACM/IEEE International Conference on Software Engineering (ICSE),
pages 367–377. ACM, 2014.

[6] J. Allaire. Macromedia Flash MX-A next-generation rich client.
Macromedia white paper, 2002. http://www.adobe.com/devnet/flash/
whitepapers/richclient.pdf.

[7] N. Alshahwan and M. Harman. Coverage and fault detection of the
output-uniqueness test selection criteria. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, ISSTA
2014, pages 181–192, New York, NY, USA, 2014. ACM.

[8] D. Amalfitano, A. Fasolino, A. Polcaro, and P. Tramontana. The
DynaRIA tool for the comprehension of Ajax web applications by
dynamic analysis. Innovations in Systems and Software Engineering,
10(1):41–57, 2014.

[9] E. Andreasen and A. Møller. Determinacy in static analysis for jQuery.
In Proc. ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), October 2014.

[10] A. Andrews, J. Offutt, and R. Alexander. Testing web applications by
modeling with FSMs. Software and Systems Modeling, 4(3):326–345,
July 2005.

[11] S. Andrica and G. Candea. WaRR: A tool for high-fidelity web
application record and replay. In Proceedings of the International
Conference on Dependable Systems & Networks (DSN), pages 403–
410. IEEE Computer Society, IEEE, 2011.

[12] S. Artzi, J. Dolby, S. Jensen, A. Møller, and F. Tip. A framework for
automated testing of JavaScript web applications. In Proceedings of
the International Conference on Software Engineering (ICSE), pages
571–580, 2011.

[13] J. Atwood. The principle of least power, 2007. http://blog.codinghorror.
com/the-principle-of-least-power/.

[14] K. Bajaj, K. Pattabiraman, and A. Mesbah. Mining questions asked by
web developers. In Proceedings of the Working Conference on Mining
Software Repositories (MSR), pages 112–121. ACM, 2014.

[15] K. Bajaj, K. Pattabiraman, and A. Mesbah. Synthesizing web element
locators. In Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering (ASE), page 11 pages. IEEE
Computer Society, 2015.

[16] Z. Behfarshad and A. Mesbah. Hidden-web induced by client-side
scripting: An empirical study. In Proceedings of the International
Conference on Web Engineering (ICWE), volume 7977 of Lecture
Notes in Computer Science, pages 52–67. Springer, 2013.

[17] T. Berners-Lee. WWW: Past, present, and future. IEEE Computer,
29(10):69–77, 1996.

[18] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst. Interactive record/replay
for web application debugging. In Proceedings of the Symposium on
User Interface Software and Technology (UIST), pages 473–484. ACM,
2013.

[19] A. Carzaniga, A. Gorla, N. Perino, and M. Pezzè. Automatic
workarounds for web applications. In Proceedings of the International
Symposium on Foundations of Software Engineering (FSE), pages 237–
246. ACM, 2010.

[20] S. R. Choudhary, M. R. Prasad, and A. Orso. Crosscheck: Combining
crawling and differencing to better detect cross-browser incompatibili-
ties in web applications. In Proceedings of the International Conference
on Software Testing, Verification and Validation, pages 171–180, Los
Alamitos, CA, USA, 2012. IEEE Computer Society.

[21] S. R. Choudhary, M. R. Prasad, and A. Orso. X-PERT: Accurate iden-
tification of cross-browser issues in web applications. In Proceedings
of the International Conference on Software Engineering (ICSE 2013),
pages 702–711, May 2013.

[22] S. R. Choudhary, H. Versee, and A. Orso. Webdiff: Automated
identification of cross-browser issues in web applications. In Proc.

of the 26th IEEE Int. Conf. on Softw. Maintenance (ICSM’10), pages
1–10, 2010.

[23] D. Crockford. JavaScript: the good parts. O’Reilly Media, Incorpo-
rated, 2008.

[24] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experi-
mentation with testing techniques: An infrastructure and its potential
impact. Empirical Softw. Engg., 10(4):405–435, Oct. 2005.

[25] S. Doaan, A. Betin-Can, and V. Garousi. Web application testing: A
systematic literature review. Journal of Systems and Software, 91:174–
201, 2014.

[26] S. Elbaum, S. Karre, and G. Rothermel. Improving web application
testing with user session data. In Proc. 25th Int Conf. on Software
Engineering (ICSE), pages 49–59. IEEE Computer Society, 2003.

[27] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher. Leveraging user-
session data to support web application testing. IEEE Transactions on
Software Engineering, 31(3):187–202, 2005.

[28] A. M. Fard, A. Mesbah, and E. Wohlstadter. Generating fixtures for
JavaScript unit testing. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE), page 11 pages.
IEEE Computer Society, 2015.

[29] A. Feldthaus, T. Millstein, A. Møller, M. Schäfer, and F. Tip. Tool-
supported refactoring for JavaScript. In Proceedings of the 2011 ACM
International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA’11, pages 119–138, New York,
NY, USA, 2011. ACM.

[30] A. Feldthaus and A. Møller. Semi-automatic rename refactoring for
JavaScript. In Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages
&#38; Applications, OOPSLA’13, pages 323–338, New York, NY,
USA, 2013. ACM.

[31] A. Feldthaus, M. Schäfer, M. Sridharan, J. Dolby, and F. Tip. Efficient
construction of approximate call graphs for JavaScript IDE services.
In Proceedings of the 2013 International Conference on Software
Engineering, ICSE ’13, pages 752–761. IEEE Press, 2013.

[32] A. Feldthaus, M. Schäfer, M. Sridharan, J. Dolby, and F. Tip. Efficient
construction of approximate call graphs for JavaScript IDE services.
In Proceedings of International Conference on Software Engineering
(ICSE), pages 752–761. IEEE, 2013.

[33] R. Fielding and R. N. Taylor. Principled design of the modern Web
architecture. ACM Trans. Inter. Tech. (TOIT), 2(2):115–150, 2002.

[34] K. Gallaba, A. Mesbah, and I. Beschastnikh. Don’t call us, we’ll call
you: Characterizing callbacks in JavaScript. In Proceedings of the
ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement (ESEM), page 10 pages. IEEE Computer Society,
2015.

[35] V. Garousi, A. Mesbah, A. Betin Can, and S. Mirshokraie. A systematic
mapping study of web application testing. Information and Software
Technology, 55(8):1374–1396, 2013.

[36] P. Geneves, N. Layaida, and V. Quint. On the analysis of Cascading
Style Sheets. In Proceedings of the 21st International Conference on
World Wide Web, WWW ’12, pages 809–818. ACM, 2012.

[37] GitHut. A small place to discover languages in GitHub. http://githut.
info, 2015.

[38] L. Gong, M. Pradel, M. Sridharan, and K. Sen. Dlint: Dynamically
checking bad coding practices in JavaScript. In Proceedings of the
International Symposium on Software Testing and Analysis, ISSTA
2015, pages 94–105. ACM, 2015.

[39] L. Gong, M. Pradel, M. Sridharan, and K. Sen. DLint: Dynamically
checking bad coding practices in JavaScript. In International Sympo-
sium on Software Testing and Analysis (ISSTA), 2015.

[40] A. Guha, S. Krishnamurthi, and T. Jim. Using static analysis for
Ajax intrusion detection. In Proceedings of the 18th International
Conference on World Wide Web, WWW ’09, pages 561–570, New
York, NY, USA, 2009. ACM.

[41] E. A. Guodong Li and I. Ghosh. SymJS: Automatic symbolic testing
of JavaScript web applications. In Proc. joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE), 2014.

[42] W. G. Halfond, S. Anand, and A. Orso. Precise interface identification
to improve testing and analysis of web applications. In Proceedings
of the Eighteenth International Symposium on Software Testing and
Analysis, ISSTA ’09, pages 285–296, New York, NY, USA, 2009.
ACM.



[43] W. G. J. Halfond and A. Orso. Improving test case generation for web
applications using automated interface discovery. In Proceedings of the
the Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, ESEC-FSE ’07, pages 145–154. ACM, 2007.

[44] M. Hills, P. Klint, and J. Vinju. An empirical study of php feature
usage: A static analysis perspective. In Proceedings of the International
Symposium on Software Testing and Analysis, ISSTA 2013, pages 325–
335. ACM, 2013.

[45] S. Hong, Y. Park, and M. Kim. Detecting concurrency errors in client-
side JavaScript web applications. In Proceedings of the International
Conference on Software Testing, Verification and Validation (ICST),
pages 61–70. IEEE, 2014.

[46] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN Not.,
39(12):92–106, Dec. 2004.

[47] M. Jazayeri. Some trends in Web application development. In Future
of Software Engineering, FOSE’07, pages 199–213. IEEE Computer
Society, 2007.

[48] S. H. Jensen, P. A. Jonsson, and A. Møller. Remedying the eval that
men do. In Proceedings of the International Symposium on Software
Testing and Analysis, ISSTA, pages 34–44. ACM, 2012.

[49] S. H. Jensen, P. A. Jonsson, and A. Møller. Remedying the eval that
men do. In Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA), pages 34–44. ACM, 2012.

[50] S. H. Jensen, M. Madsen, and A. Møller. Modeling the HTML DOM
and browser API in static analysis of JavaScript web applications. In
Proceedings of the Symposium on Foundations of Software Engineering
(ESEC/FSE), pages 59–69. ACM, 2011.

[51] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for javascript.
In Proceedings of the 16th International Symposium on Static Analysis,
SAS ’09, pages 238–255, Berlin, Heidelberg, 2009. Springer-Verlag.

[52] R. Just, D. Jalali, and M. D. Ernst. Defects4j: A database of existing
faults to enable controlled testing studies for java programs. In
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, ISSTA 2014, pages 437–440, New York, NY, USA, 2014.
ACM.

[53] V. Kashyap, K. Dewey, E. A. Kuefner, J. Wagner, K. Gibbons,
J. Sarracino, B. Wiedermann, and B. Hardekopf. JSAI: A static
analysis platform for JavaScript. In Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE
2014, pages 121–132. ACM, 2014.

[54] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Capture-replay
vs. programmable web testing: An empirical assessment during test
case evolution. In Reverse Engineering (WCRE), 2013 20th Working
Conference on, pages 272–281, 2013.

[55] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Visual vs. DOM-based
web locators: An empirical study. In Proceedings of the International
Conference on Web Engineering (ICWE), pages 322–340. Springer,
2014.

[56] D. Li, A. H. Tran, and W. G. J. Halfond. Making Web Applications
More Energy Efficient for OLED Smartphones. In Proceedings of the
International Conference on Software Engineering (ICSE), June 2014.

[57] M. Madsen, B. Livshits, and M. Fanning. Practical static analysis of
JavaScript applications in the presence of frameworks and libraries.
In Proceedings of the Symposium on the Foundations of Software
Engineering (ESEC/FSE), pages 499–509. ACM, 2013.

[58] M. Madsen, F. Tip, and O. Lhoták. Static analysis of event-driven
node.js JavaScript applications. In Proc. ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), 2015.

[59] A. Marchetto, F. Ricca, and P. Tonella. A case study-based comparison
of web testing techniques applied to Ajax web applications. Int. Journal
on Software Tools for Technology Transfer, 10(6):477–492, 2008.

[60] D. Mazinanian, N. Tsantalis, and A. Mesbah. Discovering refactoring
opportunities in cascading style sheets. In Proceedings of the ACM
SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE), pages 496–506. ACM, 2014.

[61] S. McAllister, E. Kirda, and C. Kruegel. Leveraging user interactions
for in-depth testing of web applications. In Recent Advances in
Intrusion Detection, volume 5230 of LNCS, pages 191–210. Springer,
2008.

[62] M. McCool, R. S. John, and R. Peri. Programming the internet of things

with node.js and HTML5. http://solidcon.com/internet-of-things-2015/
public/schedule/detail/40797, 2015.

[63] F. Meawad, G. Richards, F. Morandat, and J. Vitek. Eval begone!: semi-
automated removal of eval from JavaScript programs. In Proceedings of
the International Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA), pages 607–620. ACM, 2012.

[64] A. Mesbah. Advances in Testing JavaScript-based Web Applications,
volume 97 of Advances in Computers, chapter 5, pages 201–235.
Elsevier, 2015.

[65] A. Mesbah and S. Mirshokraie. Automated analysis of css rules
to support style maintenance. In Proceedings of the ACM/IEEE
International Conference on Software Engineering (ICSE), pages 408–
418. IEEE Computer Society, 2012.

[66] A. Mesbah and M. R. Prasad. Automated cross-browser compatibility
testing. In Proceedings of the ACM/IEEE International Conference on
Software Engineering (ICSE), pages 561–570. ACM, 2011.

[67] A. Mesbah and A. van Deursen. Invariant-based automatic testing
of ajax user interfaces. In Proceedings of the 31st ACM/IEEE
International Conference on Software Engineering (ICSE), pages 210–
220. IEEE Computer Society, 2009.

[68] A. Mesbah, A. van Deursen, and S. Lenselink. Crawling ajax-based
web applications through dynamic analysis of user interface state
changes. ACM Transactions on the Web (TWEB), 6(1):3:1–3:30, 2012.

[69] A. Mesbah, A. van Deursen, and D. Roest. Invariant-based automatic
testing of modern web applications. IEEE Transactions on Software
Engineering (TSE), 38(1):35–53, 2012.

[70] J. Mickens, J. Elson, and J. Howell. Mugshot: Deterministic capture
and replay for Javascript applications. In Proceedings of the 7th
USENIX Conference on Networked Systems Design and Implementa-
tion, NSDI’10, pages 159–174. USENIX Association, 2010.

[71] A. Milani Fard and A. Mesbah. Feedback-directed exploration of web
applications to derive test models. In Proceedings of the International
Symposium on Software Reliability Engineering (ISSRE), pages 278–
287. IEEE Computer Society, 2013.

[72] A. Milani Fard and A. Mesbah. JSNose: Detecting JavaScript code
smells. In Proceedings of the International Working Conference
onSource Code Analysis and Manipulation (SCAM), pages 116–125,
2013.

[73] A. Milani Fard and A. Mesbah. Jsnose: Detecting JavaScript code
smells. In Proceedings of the International Conference on Source Code
Analysis and Manipulation (SCAM), pages 116–125. IEEE Computer
Society, 2013.

[74] A. Milani Fard, M. Mirzaaghaei, and A. Mesbah. Leveraging existing
tests in automated test generation for web applications. In Proceedings
of the IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 67–78. ACM, 2014.

[75] S. Mirshokraie, A. Mesbah, and K. Pattabiraman. Efficient JavaScript
mutation testing. In Proceedings of the International Conference on
Software Testing, Verification and Validation (ICST), pages 74–83.
IEEE Computer Society, 2013.

[76] S. Mirshokraie, A. Mesbah, and K. Pattabiraman. Jseft: Automated
JavaScript unit test generation. In Proceedings of the International
Conference on Software Testing, Verification and Validation (ICST),
page 10 pages. IEEE Computer Society, 2015.

[77] S. Mirshokraie, A. Mesbah, and K. Pattabiraman. Atrina: Inferring
unit oracles from GUI test cases. In Proceedings of the International
Conference on Software Testing, Verification, and Validation (ICST),
page 11 pages. IEEE Computer Society, 2016.

[78] M. Mirzaaghaei and A. Mesbah. DOM-based test adequacy criteria for
web applications. In Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), pages 71–81. ACM, 2014.

[79] P. Montoto, A. Pan, J. Raposo, F. Bellas, and J. Lapez. Automating
navigation sequences in Ajax websites. In Proceedings of the Interna-
tional Conference on Web Engineering (ICWE), volume 5648, pages
166–180. Springer, 2009.

[80] A. Nederlof, A. Mesbah, and A. van Deursen. Software engineering
for the web: The state of the practice. In Proceedings of the ACM/IEEE
International Conference on Software Engineering, Software Engineer-
ing In Practice (ICSE SEIP), pages 4–13. ACM, 2014.

[81] H. V. Nguyen, C. Kästner, and T. N. Nguyen. Building call graphs for
embedded client-side code in dynamic web applications. In Proceed-
ings of the ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2014, pages 518–529. ACM, 2014.



[82] H. V. Nguyen, C. Kästner, and T. N. Nguyen. Building call graphs for
embedded client-side code in dynamic web applications. In Proceed-
ings of the ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2014, pages 518–529. ACM, 2014.

[83] H. V. Nguyen, C. Kästner, and T. N. Nguyen. Cross-language program
slicing for dynamic web applications. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, pages 369–380, New York, NY, USA, 2015. ACM.

[84] H. V. Nguyen, H. A. Nguyen, A. T. Nguyen, and T. N. Nguyen.
Mining interprocedural, data-oriented usage patterns in JavaScript
web applications. In Proceedings of the ACM/IEEE International
Conference on Software Engineering, pages 791–802. ACM, 2014.

[85] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, A. T. Nguyen, and
T. N. Nguyen. Detection of embedded code smells in dynamic
web applications. In Proceedings of the International Conference on
Automated Software Engineering (ASE), pages 282–285. ACM, 2012.

[86] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna. You are what you include:
Large-scale evaluation of remote JavaScript inclusions. In Proc. Conf.
on Comp. and Comm. Security, pages 736–747. ACM, 2012.

[87] F. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah. An empirical
study of client-side JavaScript bugs. In Proceedings of the ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), pages 55–64. IEEE Computer Society, 2013.

[88] F. Ocariza, K. Pattabiraman, and A. Mesbah. Vejovis: Suggesting fixes
for JavaScript faults. In Proceedings of the ACM/IEEE International
Conference on Software Engineering (ICSE), pages 837–847. ACM,
2014.

[89] F. Ocariza, K. Pattabiraman, and A. Mesbah. Detecting inconsistencies
in JavaScript MVC applications. In Proceedings of the ACM/IEEE
International Conference on Software Engineering (ICSE), pages 325–
335. ACM, 2015.

[90] F. Ocariza, K. Pattabiraman, and B. Zorn. JavaScript errors in the wild:
An empirical study. In Proceedings of the International Symposium on
Software Reliability Engineering (ISSRE), pages 100–109. IEEE, 2011.

[91] F. Ocariza, K. Pattabiraman, and B. Zorn. JavaScript errors in the
wild: An empirical study. In Proc. of the International Symposium
on Software Reliability Engineering (ISSRE), pages 100–109. IEEE
Computer Society, 2011.

[92] F. J. Ocariza, K. Pattabiraman, and A. Mesbah. Autoflox: An automatic
fault localizer for client-side JavaScript. In Proceedings of the Inter-
national Conference on Software Testing, Verification and Validation
(ICST), pages 31–40. IEEE Computer Society, 2012.

[93] S. Oney and B. Myers. FireCrystal: Understanding interactive be-
haviors in dynamic web pages. In Proceedings of the Symposium
on Visual Languages and Human-Centric Computing, pages 105–108.
IEEE Computer Society, IEEE, 2009.

[94] S. Porto. A plain english guide to JavaScript
prototypes. http://sporto.github.com/blog/2013/02/22/
a-plain-english-guide-to-javascript-prototypes/.

[95] M. Pradel and K. Sen. The good, the bad, and the ugly: An
empirical study of implicit type conversions in JavaScript. In European
Conference on Object-Oriented Programming (ECOOP), 2015.

[96] U. Praphamontripong and J. Offutt. Applying mutation testing to
web applications. In Proceedings of the 2010 Third International
Conference on Software Testing, Verification, and Validation Work-
shops, ICSTW ’10, pages 132–141, Washington, DC, USA, 2010. IEEE
Computer Society.

[97] V. Raychev, M. Vechev, and M. Sridharan. Effective race detection
for event-driven programs. In Proceedings of the ACM SIGPLAN
International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA ’13, pages 151–166. ACM, 2013.

[98] F. Ricca and P. Tonella. Analysis and testing of web applications. In
ICSE’01: 23rd Int. Conf. on Sw. Eng., pages 25–34. IEEE Computer
Society, 2001.

[99] G. Richards, C. Hammer, B. Burg, and J. Vitek. The eval that men
do. In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), pages 52–78. Springer, 2011.

[100] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of
the dynamic behavior of JavaScript programs. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI, pages 1–12. ACM, 2010.

[101] D. Roest, A. Mesbah, and A. van Deursen. Regression testing ajax
applications: Coping with dynamism. In Proceedings of the Inter-
national Conference on Software Testing, Verification, and Validation
(ICST), pages 128–136. IEEE Computer Society, 2010.

[102] H. Samimi, M. Schafer, S. Artzi, T. Millstein, F. Tip, and L. Hendren.
Automated repair of HTML generation errors in PHP applications
using string constraint solving. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 277–287. IEEE
Computer Society, 2012.

[103] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song.
A symbolic execution framework for JavaScript. In Proc. Symp. on
Security and Privacy (SP), pages 513–528. IEEE Computer Society,
2010.

[104] M. Schur, A. Roth, and A. Zeller. Mining behavior models from
enterprise web applications. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2013,
pages 422–432, New York, NY, USA, 2013. ACM.

[105] K. Sen, S. Kalasapur, T., and S. Gibbs. Jalangi: A selective record-
replay and dynamic analysis framework for JavaScript. In Proc.
European Software Engineering Conference and ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering (ES-
EC/FSE’013). ACM, 2013.

[106] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock. Automated replay
and failure detection for web applications. In Proc. 20th IEEE/ACM
Int. Conf. on Automated Sw. Eng. (ASE), pages 253–262. ACM, 2005.

[107] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip. Correlation
tracking for points-to analysis of JavaScript. In Proceedings of
European Conference on Object-Oriented Programming (ECOOP),
pages 435–458. Springer, 2012.

[108] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip. Correlation
tracking for points-to analysis of JavaScript. In Proceedings of the
European Conference on Object-Oriented Programming, ECOOP’12,
pages 435–458. Springer-Verlag, 2012.

[109] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing. SIGPLAN Not.,
42(6):112–122, June 2007.

[110] Stack Overflow. 2015 Developer Survey. http://stackoverflow.com/
research/developer-survey-2015, 2015.

[111] W3C. Document Object Model (DOM). http://www.w3.org/DOM/.
[112] W3C. Document Object Model (DOM) level 2 events specification.

http://www.w3.org/TR/DOM-Level-2-Events/, 13 November 2000.
[113] S. Wei and B. G. Ryder. Practical blended taint analysis for JavaScript.

In Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA), pages 336–346. ACM, 2013.

[114] S. Wei and B. G. Ryder. State-sensitive points-to analysis for the
dynamic behavior of JavaScript objects. In Proceedings of European
Conference on Object-Oriented Programming (ECOOP), pages 1–26.
Springer, 2014.

[115] R. Yandrapally, S. Thummalapenta, S. Sinha, and S. Chandra. Robust
test automation using contextual clues. In Proceedings of the Inter-
national Symposium on Software Testing and Analysis (ISSTA), pages
304–314. ACM, 2014.

[116] C. Yue and H. Wang. Characterizing insecure JavaScript practices on
the web. In Proceedings of the 18th international conference on World
wide web, pages 961–970. ACM, 2009.

[117] A. Zaidman, N. Matthijssen, M.-A. Storey, and A. van Deursen.
Understanding Ajax applications by connecting client and server-side
execution traces. Empirical Software Engineering, 18(2):181–218,
2013.

[118] Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: a z3-based string solver
for web application analysis. In Proceedings of the International
Symposium on Foundations of Software Engineering (FSE), pages 114–
124. ACM, 2013.


